

SCIENCE DIRECT®

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 2559-2562

Simple aromatic compounds containing propenone moiety show considerable dual COX/5-LOX inhibitory activities

Yurngdong Jahng,^a Long-Xuan Zhao,^b Yoon-Soo Moon,^a Arjun Basnet,^a Eun-kyung Kim,^a Hyeun Wook Chang,^{a,*} Hye Kyung Ju,^a Tae Cheon Jeong^a and Eung-Seok Lee^{a,*}

^aCollege of Pharmacy, Yeungnam University, Kyongsan 712-749, South Korea ^bDepartment of Chemistry, Liaoning Normal University, Dalian, Liaoning 116-029, PR China

Received 18 December 2003; accepted 24 February 2004

Abstract—For the development of safer anti-inflammatory agents, simple aromatic compounds containing propenone moiety were prepared and evaluated for their dual COX/5-LOX inhibitory activities. Among the 17 prepared compounds, most of the compounds exhibited considerable COX/5-LOX inhibitory activities. Especially compound C_{15} showed the most significant dual COX/5-LOX inhibitory activity.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used for the treatment of inflammation, pain and fever by inhibiting cyclooxygenase (COX) enzymes thus resulted in the inhibition of the conversion of arachidonic acid to prostaglandins (PGs), which are important biological mediators of inflammation, pain and fever.1 However, these classical NSAIDs have been associated with gastrointestinal (GI) tract haemorrhagia, ulceration and kidney disorders. The two isozymes of COX were identified as COX-1 and COX-2. It has been reported that COX-1 is constitutively expressed in most tissues and is involved in the regulation of physiological functions in maintaining platelet aggregation and homeostasis of the GI tract and the kidney. However, COX-2 is rapidly induced in inflammatory cells in response to cytokines, growth factors and so on. The PGs produced by COX-2 play an important role in inflammatory symptoms.³ In contrast, it has been reported that the PGs produced by COX-2 also play an important role in the regulation of renal function, ovulation, adaptive scytoprotection, vasodilation and

In this study, we designed and prepared the 17 compounds having propenone moiety as COX/5-LOX inhibitors, and evaluated their COX/5-LOX inhibitory activities. The design was performed by simplification of clinically using selective COX-2 inhibitors such as celecoxib, refecoxib, valdecoxib and etrocoxib. ^{6a} The propenone moiety was utilized as a basic skeleton, and simple aromatic compounds such as phenyl, pyridyl, thienyl and furyl groups were attached to the propenone moiety (Fig. 1). Many of the prepared compounds exhibited considerable COX/5-LOX inhibitory activities.

anti-aggregation.3d,4 In addition, PGs produced by COX-1 have also been shown to induce inflammatory responses and hyperalgesia.⁵ Therefore the selective COX-2 inhibitors may not completely satisfy the safer anti-inflammatory agents. Recently, many medicinal chemists are interested in the dual COX/5-LOX (5lipoxygenase) inhibitors that are expected to minimize the toxicity of NSAIDs.6 5-LOX has been reported to be involved in the biosynthesis of leucotrienes (LTs), which are the mediators of numerous inflammatory diseases and allergic disorders. In addition, LTs promote the development of GI damage, which is the most considerable side effect of NSAIDs.7 Therefore dual COX/5-LOX inhibitors can be expected to improve the potency of anti-inflammatory effects as well as decrease the adverse side effects of NSAIDs.

^{*}Corresponding authors. Tel.: +82-53-810-2827; fax: +82-53-810-4654; e-mail addresses: eslee@yu.ac.kr; hwchang@yu.ac.kr

Figure 1.

Scheme 1.

2. Chemistry

Synthetic methods for the preparation of propenone derivatives (C_1 – C_{17}) are summarized in Scheme 1. Acetyl derivatives **A** were treated with aldehyde derivatives **B** in the presence of KOH in methanol–water (5:1), to afford the products C_{1-17} in 75.8–97.1% yields. Figure 2 shows the prepared propenone derivatives (C_1 – C_{17}).

3. Results and discussion

COX-1, COX-2 and 5-LOX inhibitory activities⁸ for the 17 prepared propenone derivatives are shown in Table 1.

Most of the prepared compounds exhibited considerable COX-1, COX-2 and 5-LOX inhibitory activities. Especially, compound C₁₅9 showed a relatively strong 5-LOX inhibitory activity with moderate COX inhibitory activities. It has been reported that the dual COX/5-LOX inhibitors generally exhibit a IC₅₀ value of 0.1–8 μM for 5-LOX inhibition, and a COX-1/COX-2 ratio of 2.5–500^{6a} so far, even though some singly acting COX-2 or 5-LOX inhibitors show much stronger inhibitory activities. Compared to other reported dual COX/5-LOX inhibitors, our compounds are very simple and easy to prepare. In addition, it was discovered in our research group that C₁₅ inhibited 90.0% of nitric oxide production at 50 μM, which is also related to the

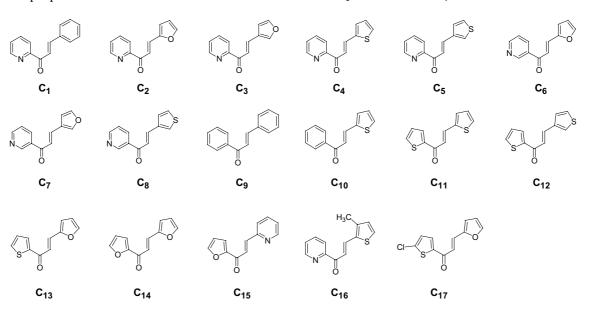


Figure 2.

Table 1. COX-1, COX-2 and 5-LOX inhibitory activities of prepared compounds

Compounds	IC_{50} (μM)		
	COX-1	COX-2	5-LOX
C ₁	32.5	28.7	8.13
\mathbb{C}_2	23.6	7.44	13.5
\mathbb{C}_3	23.6	12.0	13.8
C ₄	10.6	9.01	10.0
C ₅	13.0	5.22	7.60
\mathbb{C}_6	59.7	12.0	12.0
C ₇	21.0	7.92	13.4
\mathbb{C}_8	13.0	18.4	10.0
C9	22.1	11.2	12.2
C_{10}	46.2	9.02	9.50
\mathbb{C}_{11}	9.01	3.40	4.80
\mathbb{C}_{12}	59.9	26.7	5.90
\mathbb{C}_{13}	60.7	13.7	14.0
C ₁₄	80.7	29.0	12.8
C ₁₅	65.3	1.89	0.37
C ₁₆	40.1	23.4	6.51
C ₁₇	57.4	14.1	7.52
AA 861 ^a			0.032
NS398 ^b	1.67	< 0.002	

^a Positive control for 5-LOX.¹⁰

inflammatory process. This result will be published elsewhere. The structure–activity relationship study of the prepared compounds for COX-1, COX-2 and 5-LOX inhibitory activities showed that C₁₅ containing 5-membered ring at C1 position and six-membered ring at C3 position showed 10–40 times more active for 5-LOX than other compounds.

In conclusion, we prepared the 17 aromatic compounds containing propenone moiety and evaluated their COX/5-LOX inhibitory activities. This was the first report of the dual COX/5-LOX inhibitory activities of simple propenone derivatives. The results of this study may provide valuable information to researchers who are working on the development of safer anti-inflammatory agents. Further studies are in progress to elaborate the structure–activity relationship.

Acknowledgements

This work was supported by a grant (KRF-2002-005-E00019) from the Korea Research Foundation, ROK.

References and notes

- (a) Vane, J. R. Nature (New Biol.) 1971, 231, 232–235; (b)
 Laneuville, O.; Breuer, D. K.; De Witt, D. L.; Hla, T.;
 Funk, C. D.; Smith, W. L. J. Pharmacol. Exp. 1994, 271,
 927–934; (c) Fiorucci, S.; Meri, R.; Buch, M.; Cirino, G.
 Biochem. Pharmacol. 2001, 62, 1433–1438.
- (a) De Witt, D. L.; Meade, E. A.; Smith, W. L. Am. J. Med. 1993, 95, 40S-44S; (b) Fries, J. F.; Miller, S. R.; Spitz, B. W.; Williams, C. A.; Hubert, H. B.; Broch, D. A.

- Gastroenterology 1989, 96, 647–655; (c) Fosslien, E. Ann. Clin. Lab. Sci. 1998, 28, 67–81; (d) Huang, H.-C.; Li, J. J.; Garland, D. J.; Chamberlain, T. S.; Reinhard, E. J.; Manning, R. E.; Seibert, K.; Koboldt, C. M.; Gregory, S. A.; Anderson, G. D.; Veenhuizen, A. W.; Zhang, Y.; Perkins, W. E.; Burton, E. G.; Cogburn, J. N.; Isakson, P. C.; Reitz, D. B. J. Med. Chem. 1996, 39, 253–266.
- (a) Hoffman, C. Curr. Med. Chem. 2000, 7, 1113–1120; (b) Catella-Lawson, F.; McAdam, B.; Morrison, B. W.; Kapoor, S.; Kujubu, D.; Antes, L.; Lasseter, K. C.; Quan, H.; Gertz, B. J.; FitzGerald, G. A. J. Pharmacol. Exp. Ther. 1999, 289, 735–741; (c) Mc Adam, B. F.; Catella-Lawson, F.; Mardini, I. A.; Kapoor, S.; Lawson, J. A.; FitzGerald, G. A. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 272–277; (d) Bertolini, A.; Ottani, A.; Sandrini, M. Pharmacol. Res. 2001, 44, 437–450.
- (a) Gambaro, G. Nephrol. Dial. Transplant. 2002, 17, 1159–1162; (b) Vane, J. R.; Bakhle, Y. S.; Botting, R. M. Ann. Rev. Pharmacol. Toxicol. 1998, 38, 97–120; (c) Parente, L. J. Rheumatol. 2001, 28, 2375–2382; (d) Mukherjee, D. Biochem. Pharmacol. 2002, 63, 817–821.
- 5. Parente, L.; Perretti, M. *Biochem. Pharmcol.* **2003**, *63*, 153–159.
- (a) Charlier, C.; Michaux, C. Eur. J. Med. Chem. 2003, 38, 645–659; (b) Ulbich, H.; Fiebich, B.; Dannhardt, G. Eur. J. Med. Chem. 2002, 37, 953–959; (c) Kirchner, T.; Argentieri, D. C.; Barbone, A. G.; Singer, M.; Steber, M.; Ansell, J.; Beers, S. A.; Wachter, M. P.; Wu, W.; Malloy, E.; Stewart, A.; Ritchie, D. M. J. Pharmacol. Exp. Ther. 1997, 282, 1094–1101; (d) Skelly, M. M.; Hawkey, C. J. Int. J. Clin. Pract. 2003, 57, 301–304; (e) Pasqualini, M. E.; Mohn, C. E.; Petiti, J. P.; Manzo, P.; Eynard, A. R. Prostaglandins Leukot. Essent. Fatty Acids 2000, 63, 377–383; (f) De Gaetano, G.; Donati, M. B.; Cerletti, C. Trends Pharmacol. Sci. 2003, 24, 245–252; (g) Kuhn, C.; Bekemeier, H.; Hirschelmann, R.; Giessler, A. J. Biomed. Biochim. Acta 1988, 47, S320–S323.
- (a) Radmark, O. P. Am. J. Respir. Crit. Care Med. Part 2 2000, 161, S11–S15; (b) Celotti, F.; Laufer, S. Pharmacol. Res. 2001, 43, 429–436; (c) Nickerson-Nutter, C. L.; Medvedeff, E. D. Arthritis Rheum. 1996, 39, 515–521; (d) Dyer, R. D.; Connor, D. T. Curr. Pharm. Des. 1997, 3, 463–472.
- 8. Bone marrow cells from male Balb/cJ mice were cultured for up to 10 weeks in 50% enriched medium (RPMI 1640 containing 2 mM L-glutamine, 0.1 mM nonessential amino acids, antibiotics and 10% foetal calf serum) and 50% WEHI-3 cell conditioned medium as a source of IL-3. After 3 weeks, >98% of the cells were found to be BMMC checked by the previously described procedure (13,15). For measuring inhibitory activity on COX-2 by prepared compounds, cells suspended at a cell density of 5×10^5 cells/mL in an enriched medium were preincubated with aspirin (10 µg/mL) for 2 h in order to irreversibly inactivate the preexisting COX-1. After washing, BMMC were activated with KL (100 ng/mL), IL-10 (100 μ/mL) and LPS (100 ng/mL) at 37 °C for 8 h in the presence or absence of the prepared compounds previously dissolved in dimethylsulfoxide (DMSO). For measuring COX-1 activity, cells without aspirin pretreatment were incubated at 37 °C for 2 h with activators. All reactions were stopped by centrifugation at 120g at 4°C for 5 min. The supernatant and cell pellet were immediately frozen in liquid N₂ and stored at -80 °C for further analysis.
 - LTC₄ determination: BMMC suspended in an enriched medium at a cell density of 1×10^6 cells/mL were pretreated with prepared compounds for 30 min at 37 °C and stimulated with stem cell factor (SCF; 100 ng/mL). After 20 min of stimulation, the supernatants were isolated for further

^bPositive control for COX-1 and COX-2.¹¹

- analysis by EIA. The PGD₂ and the LTC₄ were determined using an enzyme immunoassay kit (Cayman Chemical, Ann Arbor, MI, USA) according to manufacturer's instruction. Under the conditions employed, COX-1, and COX-2-dependent phases of PGD₂ generation and LTC₄ reached 1.5 ng, 3.7 ng and 500 pg/10⁶ cells, respectively. All data was the arithmetic mean of triplicate determinations.
- 9. The spectral data of C_{15} : TLC (EtOAc—n-hexane = 1:2, v:v), $R_f = 0.17$ ¹H NMR (250 MHz, CDCl₃): δ 8.70 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H, pyridine H-6), 7.97 (d, J = 15.4 Hz, 1H, -CH=CH-CO), 7.84 (d, J = 15.4 Hz, 1H, pyridine H-4), 7.68 (dd, J = 1.7, 0.7 Hz, 1H, furan H-5), 7.48 (dt, J = 7.8, 1.2 Hz, 1H, pyridine H-3), 7.42 (dd, J = 3.6, 0.7 Hz, 1H, furan H-3), 7.31 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H, pyridine H-5), 6.61 (dd, J = 3.6, 1.7 Hz, 1H, furan H-4). ESI LC/MS [MH]⁺ 200.
- HPLC condition: column: C18 reverse phased, $1.5 \times 150 \,\text{mm}$, $5 \,\mu\text{m}$, GL science, flow rate: $180 \,\mu\text{L/min}$, injection volume: $5 \,\mu\text{L}$ of $100 \,\mu\text{M}$ solution, mobile phase: 0.1% formic acid in water (A), 0.1% formic acid in acetonitrile (B), 10% B in A to 90% B in A for $10 \,\text{min}$ and retaining for $10 \,\text{min}$ at 90% B in A, retention time: $15 \,\text{min}$
- MS ionization condition: sheath gas flow rate: 70 arb, Aux gas flow rate: 20 arb, I spray voltage: 4.5 kV, capillary temp.: 215 °C, capillary voltage: 21 V, TUBE LENS offset: 10 V.
- Yoshimoto, T.; Yokoyama, C.; Ochi, K.; Yamamoto, S.; Maki, Y.; Ashida, Y.; Terao, S.; Shiraishi, M. Biochim. Biophys. Acta 1982, 713, 470-473.
- Mitchell, J. A.; Akarasereenont, P.; Thiemermann, C.; Flower, R. J.; Vane, J. R. *Proc. Natl. Acad. Sci. U.S.A.* 1993, 90, 11693–11697.